
ARCHITECTURE DESIGN FOR DEBLOCKING FILTER IN H.264/JVT/AVC

Yu-Wen Huang*, To-Wei Chen, Bing-Yu Hsieh, Tu-Chih Wang, Te-Ha0 Chang, and Liang-Gee Chen

DSP/IC Design Lab., Graduate Institute of Electronics Engineering and
' Department of Electrical Engineering, National Taiwan University
.{yuwen, tchen, bingyu, e.ric, thchang, Igchen} @video.ee.ntu.edu.tw

.

.

ABSTRACT

This paper,presents an efficient VLSI architecture for the dehlock-
ing filter in H.ZWIVT/AVC. We use an array of 8x4 &bit shift
registers with reconligurable data path to support both horizon-
tal filtering and vertical filtering on the same circuit (a parallel-in
parallel-out reconfigurable FIR filter). Two SRAM modules are
carefully organized not only for the storage of current macroblock
data and adjacent block data but also for the efficient access of pix-
els in different blocks. Simulation results show that under 0.25 pm
technology. the synthesized logic gate count is only 19.1 K (not in-
cluding a 96x32 SRAM and a 64x32 SRAM) when the maximum
frequency is 1M) MHz. Our architecture design can easily sup-
port real-time deblocking of 720p (1280x720) 30Hz video. It is
valuable for platfom-based design of H.264 codec.

1. INTRODUCTION

Experts from ISO/IEC MPEG-4 Advanced Video Coding (AVC)
and ITU-T H.264 cooperate together as the Joint Video Team (JVT)
to develop the emerging standard [I]. The new standard signifi-

-candy outperforms previous ones in hit-rate reduction. The func-
tional blocks of H.264, as well as their features, are shown in Fig.
1. Unlike the overlapped motion compensation (OBMC) [2] in
H.263 [31 and MPEG-4 141. H.264 adopts the deblocking filter to
eliminate blocking artifacts and to achieve much better subjective
views. Since the dehlocking filter is located in the DPCM loop, it
is required at both the encoder side and the decoder side. The de-
blocking filter is much more complex than common low-pass FIR
filters that introduce blurring effects on real edges. The concept
of deblocking is to first decide whether the discontinuity between
block boundaries is resulted from quantization, different motion
vectors, or real edges. Then, different types of filters are selected
according to the decision in order to maintain the sharpness of real
edges and to smooth the unpleasant block boundaries simultane-
ously. The number of taps, set of filter coefficients, clipping func-
tions, and threshold values, are all adaptive with different coding
modes.

At the decoder side, deblocking filter contributes to a consider-
able amount of computation. At the encoder side, motion estima-
tion becomes the processing bottleneck. However, pure software
implementation of deblocking filter still requires a large amount
of bus bandwidth for platform-based design. For example, CIF
(352x288) 30Hz video needs 36 Mbytedsec, and 720x480 30Hz
video needs 124 Mbytedsec. Therefore, we proposed a hardware
accelerator for deblocking to decrease the processing cycles and

'The author thanks SiS Education Foundation for financial support.

0-7803-7965-9/03/$I7.00 02003 IEEE

Fig. 1. Functional blocks and features of H.264.

the heavy burden of system bus. The rest of this paper is orga-
nized as follows. In Section 2, we will review the algorithm of
deblocking in H.264. In Section 3, we will describe our architec-
ture design. Simulation results will be shown in Section 4. Finally,
Section 5 gives a conclusion.

2. ALGORITHM

In H.264, the transformation is based on 4x4-blocks, and the small-
est block size for motion compensation is also 4x4. Therefore,
deblocking process checks the boundaries between 4x4 blocks.
Deblocking is done macroblock (MB) by macroblock in raster
scan order. In each macroblock, horizontal filtering across vertical
edges is first executed, and then vertical filtering across horizon-
tal edges is applied. The sequential order of edges is shown in
Fig. 2. For each boundary between neighboring 4x4-luma blocks,
a boundary strength (Bs) is assigned as shown in Fig. 3. If one
of the neighboring blocks is intra-coded, a relatively strong filter-
ing (Bs=3) is applied. If the block boundary is also macroblock
boundary and one of the blocks is intra-coded, an even stronger
filtering procedure is applied (Bs=4). If neither of the blocks are
intra-coded and at least one of them contains non-zero transform
quantized residues, medium filtering strength (Bs=2) is used. If
none of the previous conditions are satisfied, Bs=l when the ref-

I - 693 ICME 2003

Fig. 2. Sequential order of venical edges and horizontal edges in
a macroblock. Each square stands for a 4x4-blofk.

Fig. 3. Flowchart for determining the boundary strength.
m

Fig. 4. Chroma boundary strengths.

PI PI P, Po "0 7, b PI

Fig. 5. Convention for describing samples across a boundary he-
tween two 4x4-blocks (in horizontal or vertical direction).

Without deblocking (QP=35) With deblocking (QP=35)
39.1616 dB 32.4859 dB

Fig. 6. Subjective views and PSNR values withoutlwith deblock-
ing for the first frame of Foreman.

...................

Fig. 7. Architecture design for the deblocking filter.

erence frames of two blocks are different or when the reference
frames are the same but any component of the two motion vectors
has difference more than one pixel sample. Otherwise filtering is
skipped (Bs=O). The chroma boundarfstrengths are the same as
corresponding luma boundary strengths, as shown in Fig. 4:In the
following description. the set of eight samples across a boundary
between two 4x4-blocks (in horizontal or vertical direction) is de-
noted as shown in Fig. 5 with the actual boundary lying between
PO and qo. Sets of samples across this edge are only filtered if the
following conditions

Bs # 0 IPO - qol < a IPI - P O I < B 141 - qol < B
are all true. Note that a and 0 are Q P (quantization parameter)
dependent thresholds. After Bs is determined, two types of filter-
ing are specified. In the default case (O<Bs<4), po and qo are
filtered with QP dependent clipping functions. For luma samples,
p l and ql are further conditionally filtered. The number of taps
is four. In the other case (B s d) , a 3-tap filter, a 4-tap filter, or a
5-tap filter is applied on pz , p l , PO, qo, q1 and qz, which depends
on the local activity of the luma or chroma eight samples and QP
dependent thresholds. Let us skip the details ofthe coefficients of
filters. Interested readers can refer to [I] and [SI. Figure 6 shows
the effect of the deblocking filter.

3. ARCHITECTURE

Figure 7 shows the proposed architecture design for the dehlock-
ing filter. The solid arrows denote data path, and the dotted ar-
rows denote control signals. Before deblocking a macroblock for
platfom-hased design, we have to load the macrohlock data (16
luma 4x4-hlocks. 8 chroma 4x4-blocks) and adjacent block data
(8 luma 4x4-blocks. 4 chroma 4x4-blocks) from extemal RAM
via system bus to the on-chip SRAM. A parallel-io parallel-out
(eight pixels in, eight pixels out) I-D reconfigurahle FIR filter
is directly implemented as stated in the previous section. In or-
der to support the parallel filter with high utilization, two SRAM
modules are carefully organized. As shown in Fig. 8, the hit
width of each SRAM is 32 (4 pixels). We classify 4x4-hlocks
into different columns (~ 0 . ~ 1 0) and store 4x1 pixels as one 32-hit
word in SRAM. Then, we put adjacent columns of block data in
different SRAM modules so that we can access any eight pixels
across different columns of blocks. In this way, horizontal filter-
ing across vertical edges becomes very easy. However, vertical
filtering across horizontal edges are not that straightfonvard. Our
solutions will be stated as follows.

I - 694

Fig. S. Organization of on-chip single port SRAM modules.

m m

Fig. 9. Processing order of boundaries; (a) horizontal filtering
across vertical edges; (h) vertical filtering across horizontal edges.

3.1. Basic Architecture with 2 Single Port SRAM's

In this subsection, we assume each SRAM module has only one
readlwrite port. The processing order of block boundaries for both
directions is shown in Fig. 9. Our basic idea is to buffer the 8x4
unfilteredlfiltered pixels of two adjacent 4x4-blocks in an 8x4 pixel
array with reconfigurable data path in order to support both hori-
zontal and vertical filtering on the same I-D filters.

The data path for horizontal filtering is shown in Fig. IO(a).
Note that solid arrows denote enabled path while dotted arrows
denote disabled path, and each square stands for an 8-hit register.
For this architecture, it takes 8 clock cycles to process each pair of
4x4-blocks. In the first 4 cycles. 8x1 pixels are inputted from two
SRAM modules into I-D filters. Meanwhile. the filtered pixels are
fed to Port1 and Port2 of the pixel array with downward path. In
the later 4 cycles, filtered 8x4 pixels are already saved in the array,
and we store them hack to the two SRAM's.

The data path for vertical filtering is divided into a loadistore
phase and a filtering phase, as shown in Fig. IO(h) and (c). re-
spectively. First. we assume the filtered 8x4 pixels of previous
boundary are already buffered in the array. In the loadlstore phase,
the path of pixel array is rightward. I t takes 8 cycles to load the
4x8 pixels of a 4x4-block pair belonging to one column, and also
to store the 4x8 previously filtered pixels of another 4x4-block pair
belonging to the previous column. The load and store can he exe-
cuted at the same time without conflict because of the interleaved
memory organization. In the filtering phase. the path of pixel array
becomes downward. It is clearly that 4 cycles are required to filter
the 4x8 pixels and to buffer the filtered results in the array.

In sum, if the bit width of system bus is typically 32, we have
to spend I60 cycles to load unfiltered pixels from external memory
lo on-chip SRAM's. 8x24=192 cycles to filter in horizontal direc-
tion.(8+l2xl6)+(8+I2~4)x2=312 cycles to filter in vertical direc-
tion, and 160 cycles to write filtered pixels from on-chip SRAM's
to external memory. Some,exlra cycles are also required to load
the coding information before deblocking. In our implementation,

(a)
w, . : ws . . .

4- I=-,

Fig. 10. Data path; (a) horizontal filtering across vertical edges;
(h) vertical filtering across horizontal edges (loadlstore phase): (c)
vertical filtering across horizontal edges (filtering phase).

54 cycles are required. The number of total cycles required for
deblocking a macrohlock is 878.

3.2. Advanced Architecture with 1 Dual Port SRAM

We can pack the pixels, which were originally placed in two sin-
gle port SRAM's as shown in Fig. 8, together into one dual port
SRAM as illustrated in Fig. I I , without affecting the data flow.
Because a dual port SRAM has two separate readlwrite ports. i t
can perform two read operations at the same cycle, as well as two
write operations, or one read and one write at the same cycle. It is
worthwhile to use one dual port SRAM instead of two single port
SRAM's for we can save one power ring on the physical layout.

Fig. 11. Organization of on-chip dual port SRAM.

I - 695

Table 1. Comparison of architectures synthesized at 100 MHz.

AlChiIeCWI Gate Count CycleslMB Capability

Baric + single pan SRAWs 18.91K 878 1280x72031.6fpr
Advanadcdual parlSRAM 18.91K 814 1280x72034.lfpr
Baric + two pon SRAM'r 18.91K 782 1280x720 35.5fpr
Dualarrayr+twoponSFAM'r 20.66K 614 1280x72045.2fpr

cmvll ,"B. a r p s m : 5.nx I- RAM 1, "c. ,E,- 1"0* hl. IILePr 6 61KIycI. Am) ,.,W.

Fig. 12. Advanced processing order of boundaries; (a) horizontal
filtering: (b) vertical filtering; (c) block index.

Fig. 13. Advanced data path for horizontal filtering

Next, we modify the processing order of boundaries as shown in
Fig. l2(a)(b) without affecting the data dependency in Fig. 2. The
block index is shown in Fig. 12(c). The main idea is stated as
follows. For example, for horizontal filtering, after boundary I is
processed, we only have to write block 1 from m a y to SRAM. As
for block 6. we can directly send it back to the filters with block I I
from SRAM to keep on processing boundary 2. At this moment,
in order to support the new processing order, the data path also has
to be reconfigured as Fig. 13. In this way, the number of cycles
for horizontal filtering is decreased to 152. The data Row and data
path of vertical filtering can be easily derived with the help of Fig.
12(b). The number of cycles for vertical filtering is reduced to 288,
and the number of total cycles becomes 814.

3.3. Parallel Architecture with 2 Two Port SRAM's

If we replace each of the two single port SRAM's by a two pon
SRAM (one read port and one write port). for horizontal filtering,
we do not need the 8x4 pixel may. We can directly get 8x1 pix-
els from two SRAM's, filter 8x1 pixels, and write them back to
SRAM's at the same time. However, for vertical filtering. the 8x4
pixel m a y is still necessary because the vertical filtered 8x1 pixels
belong to 8 separate words in one SRAM. That is, the data path
for vertical filtering is still the same as Fig. IO(b) and (c). There-
fore, it only requires 4x24=96 cycles for horizontal filtering, and
the number of total cycles is reduced to 782. If we can have 2
two port SRAM's and dual 8x4 pixel mays in parallel, the venical
filtering can be further accelerated. In this way, the number of cy-
cles required for vertical filtering becomes 12x24/2=144, and the
number of total cycles becomes 614.

Table 2. Comparison of bus bandwidth.
Specifications Software (RISC) Our An'hitecmre

I-=) ,MhYlruur)

CIF (352x240) MHz 36.50 15.21
NTSC (120x480) MI11 124.42 51.84
72Op (1280x720) 30Hz 331.18 138.24

4. SIMULATION RESULTS

We described our architecture by Verilog HDL and synthesized the
circuit using 0.25 pm Artisan CMOS cell library by Synopsys De-
sign Analyzer with critical path constraint set to 10 ns (100 MHz).
The results are shown in Table 1. The processing capability of our
architecture can easily support real-time deblocking of 720p 30Hz
video, and the synthesized gate count is very small. Table 2 shows
the comparison of system bus bandwidth for platfom-based de-
sign. Our architecture can save more than 50% of the bandwidth
compared to software implementation of the deblocking filter (pro-
cessed by RISC). According to the simulation results, our design is
a good candidate of deblocking filter for the platform-based design
of H.264 coding systems.

5. CONCLUSION

In this paper. we contributed a hardware deblocking accelerator for
H.264llVTlAVC. The major idea is to use interleaved memory or-
ganization and an 8x4 pixel m a y with reconfigurable datapath to
support one parallel-in parallel-out reconfigurable I-D filter. Sim-
ulation results show that the processiiig capability of the proposed
architecture is very high (real-time deblocking of 1280x720 30He
video operating at 66-94 MHz), and the area is very small (around
19K logic gates + 96x32 SRAM + 64x32 SRAM). It is very suit-
able to be integrated into H.264 coding systems.

6. REFERENCES

Comniilree DraJi of Join1 Wdeo Specifcarion (ITU-T Rec.
H.264 and lS0NEC 14496.10 AVC). July, 2002.
M.T. Orchard and G.J Suillivan, "Overlapped block mo-
tion compensation: an estimation-theoretic approach," IEEE
Trans. Image Processing, pp. 693-699, Sep. 1994.
Video Coding for Low Bit Rate Communicarion. ITU-T Rec-

ommend H.263, Feb. 1998.
Information Technology - Coding of Audio-Visual Objects -

Pan 2; Visual, ISONEC 144496-2, 1999.

Join1 Wdeo Team (JWJ sofrwnre JMb.ld, March, 2003.

I - 696

